Transformation of Tetrahymena thermophila with a mutated circular ribosomal DNA plasmid vector.

نویسندگان

  • G L Yu
  • E H Blackburn
چکیده

A circular plasmid containing a complete Tetrahymena thermophila rRNA gene (rDNA), with a tandem repeat of a 1.9-kilobase-pair segment encompassing the replication origin and the rRNA promoter, and a polylinker in the 3' nontranscribed spacer, was used to transform T. thermophila by microinjection. Most (20/21) stable transformants contained only recombinant linear palindromic rDNA molecules carrying rDNA sequences from both the donor plasmid and the recipient cell, as shown previously. However, in one transformant, the circular plasmid initially outreplicated the endogenous rDNA and was the major rDNA form for up to 65 generations. Stable circular replicons have not been reported previously in Tetrahymena. A single point mutation (+G) was identified in the repeated promoter of the plasmid maintained in this transformant. After recovery from the Tetrahymena transformant and recloning in Escherichia coli, the mutated circular plasmid again transformed Tetrahymena with stable maintenance of the circular rDNA plasmid. Transformants containing circular replicons were also obtained by using a similar plasmid from which the repeated promoter, but not the repeated replication origin, had been removed by BAL-31 deletion. We therefore propose that repeated rRNA promoters are deleterious in vivo in Tetrahymena, which normally lacks them. Transformants were obtained in 2-5 days compared with the 7-14 days required for transformation with unmutated rDNA plasmids by recombination. Similar results were obtained when a 550-base-pair segment containing the telomerase RNA gene of T. thermophila was inserted in the polylinker of the plasmid. We suggest that this plasmid is a useful vector system for transformation of Tetrahymena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment.

Mating Tetrahymena thermophila were bombarded with ribosomal DNA-coated particles at various times in development. Both macronuclear and micronuclear transformants were recovered. Optimal developmental stages for transformation occurred during meiosis for the micronucleus and during anlagen formation for the macronucleus. Evidence is given for transient retention of the introduced plasmid. Gene...

متن کامل

Germ line-specific DNA sequences are present on all five micronuclear chromosomes in Tetrahymena thermophila.

The development of the macronucleus from the zygotic micronucleus in the ciliated protozoan Tetrahymena spp. involves the elimination of specific DNA sequences (M. C. Yao and M. Gorovsky, Chromosoma 48:1-18 1974). The present study demonstrates that micronucleus-specific DNA is present on all five of the micronuclear chromosomes. Fragments of micronuclear DNA from Tetrahymena thermophila were c...

متن کامل

Transformation of Tetrahymena thermophila by microinjection of a foreign gene.

Tetrahymena thermophila has been transformed to paromomycin-resistant phenotypes by microinjection of an aminoglycoside 3'-phosphotransferase (neo) gene under the control of the T. thermophila histone H4-I promoter. This chimeric neo gene, by itself or on a vector containing a rRNA-encoding DNA (rDNA) origin of replication, transforms T. thermophila. In cells transformed with the rDNA origin ve...

متن کامل

A mutation in the large subunit ribosomal RNA gene of Tetrahymena confers anisomycin resistance and cold sensitivity.

Anisomycin, an antibiotic that specifically inhibits the peptidyl transfer function of eukaryotic ribosomes, has been used to select resistant mutants in Tetrahymena thermophila. A mutation conferring anisomycin resistance (an-r) has been localized to a 1.2-kb fragment of the large subunit ribosomal RNA (rRNA) gene by transformation via microinjection. A single base pair change was detected wit...

متن کامل

Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins.

The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis-acting replication determinant--the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non-rDNA fragment containing two closely associated replicators, ARS1-A (0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 21  شماره 

صفحات  -

تاریخ انتشار 1989